Integration of Hyberbolic Functions
Integration of Hyperbolic Functions
Example 1:
$$\int \sinh 3x \, dx $$
Solution:
$$\int \sinh 3x \, dx $$
$$\textup{Let}\,\, u=3x$$
$$du=3dx$$
$$\frac{du}{3}=dx$$
$$\int \sinh 3x \, dx = \int \sinh u \, \frac{dx}{3} $$
$$= \frac{1}{3} \int \sinh u\, du$$
$$\because\int \sinh x \, dx = \int \cosh x \,dx$$
$$\therefore\int \sinh 3x \, dx = \frac{1}{3} \cosh u + C$$
$$= \frac{1}{3} \cosh 3x + C$$