Differentiation of Inverse Trigonometric Functions
Differentiation of Inverse Trigonometric Functions
Example 1:
$$ y=\sin ^{-1} 3x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\sin ^{-1} 3x$$
$$ \frac{dy}{dx}=\frac{d}{dx}\sin ^{-1} 3x$$
$$ \textup{Let}\; u= 3x$$
$$ \frac{dy}{dx}=\frac{d}{dx} \sin ^{-1} u$$
$$ \frac{dy}{dx}=\frac{d}{du} \sin ^{-1} u \frac{du}{dx}$$
$$ \because\frac{d}{dx}\sin ^{-1} x=\frac{1}{\sqrt{1-x^2}}$$
$$ \therefore\frac{dy}{dx}=\frac{1}{\sqrt{1-u^2}} \frac{d}{dx}3x$$
$$ \frac{dy}{dx}=\frac{1}{\sqrt{1-(3x)^2}}(3\frac{d}{dx}x)$$
$$ \because\frac{d}{dx} x=1 $$
$$ \therefore \frac{dy}{dx}=\frac{1}{\sqrt{1-9x^2}}(3(1))$$
$$ \frac{dy}{dx}=\frac{1}{\sqrt{1-9x^2}} (3)$$
$$ \frac{dy}{dx}=\frac{3}{\sqrt{1-9x^2}}$$