Differentiation of Trigonometric Functions
Differentiation of Trigonometric Functions
Example 1:
$$ y=\sin 4x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\sin 4x$$
$$ \frac{dy}{dx}=\frac{d}{dx}\sin 4x$$
$$ \textup{Let}\; u= 4x$$
$$ \frac{dy}{dx}=\frac{d}{dx} \sin u$$
$$ \frac{dy}{dx}=\frac{d}{du} \sin u \frac{du}{dx}$$
$$ \because\frac{d}{dx}\sin x=\cos x$$
$$ \therefore\frac{dy}{dx}=\cos u \frac{d}{dx}4x$$
$$ \frac{dy}{dx}=\cos 4x (4\frac{d}{dx}x)$$
$$ \because\frac{d}{dx} x=1 $$
$$ \therefore \frac{dy}{dx}=\cos 4x (4(1))$$
$$ \frac{dy}{dx}=\cos 4x (4)$$
$$ \frac{dy}{dx}=4\cos 4x $$