Chain Rule of Differentiation
Chain Rule of Differentiation
Example 1:
$$ y=(x+5)^6,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=(x+5)^6$$
$$ \frac{dy}{dx}=\frac{d}{dx} (x+5)^6$$
$$ \textup{Let}\;\;\; u = x+5 $$
$$ \frac{dy}{dx}=\frac{d}{dx} u^6$$
$$ \frac{dy}{dx}=\frac{d}{du} u^6 \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=6u^{6-1}\frac{d}{dx}(x+5)$$
$$ \frac{dy}{dx}=6u^5(\frac{d}{dx}x+\frac{d}{dx}5)$$
$$ \because\frac{d}{dx} x=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=6u^5(1+0)$$
$$ \frac{dy}{dx}=6u^5(1)$$
$$ \frac{dy}{dx}=6u^5$$
$$ \frac{dy}{dx}=6(x+5)^5$$
Example 2:
$$ y=(3x-4)^5,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=(3x-4)^5$$
$$ \frac{dy}{dx}=\frac{d}{dx} (3x-4)^5$$
$$ \textup{Let}\;\;\; u = 3x-4 $$
$$ \frac{dy}{dx}=\frac{d}{dx} u^5$$
$$ \frac{dy}{dx}=\frac{d}{du} u^5 \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=5u^{5-1}\frac{d}{dx}(3x-4)$$
$$ \frac{dy}{dx}=5u^4\left(\frac{d}{dx}3x-\frac{d}{dx}4\right)$$
$$ \frac{dy}{dx}=5u^4\left(3\frac{d}{dx}x-\frac{d}{dx}4\right)$$
$$ \because\frac{d}{dx} x=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=5u^4(3(1)-0)$$
$$ \frac{dy}{dx}=5u^4(3)$$
$$ \frac{dy}{dx}=15u^4$$
$$ \frac{dy}{dx}=15(3x-4)^4$$
Example 3:
$$ y=(2-5x)^4,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=(2-5x)^4$$
$$ \frac{dy}{dx}=\frac{d}{dx} (2-5x)^4$$
$$ \textup{Let}\;\;\; u = 2-5x $$
$$ \frac{dy}{dx}=\frac{d}{dx} u^4$$
$$ \frac{dy}{dx}=\frac{d}{du} u^4 \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=4u^{4-1}\frac{d}{dx}(2-5x)$$
$$ \frac{dy}{dx}=4u^3\left(\frac{d}{dx}2-\frac{d}{dx}5x\right)$$
$$ \frac{dy}{dx}=4u^3\left(\frac{d}{dx}2-5\frac{d}{dx}x\right)$$
$$ \because\frac{d}{dx}c=0 \;\;\; \textup{and} \;\;\;\frac{d}{dx} x=1$$
$$ \therefore\frac{dy}{dx}=4u^3(0-5(1))$$
$$ \frac{dy}{dx}=4u^3(-5)$$
$$ \frac{dy}{dx}=-20u^3$$
$$ \frac{dy}{dx}=-20(2-5x)^3$$
Example 4:
$$ y=(4x^2+1)^7,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=(4x^2+1)^7$$
$$ \frac{dy}{dx}=\frac{d}{dx}(4x^2+1)^7$$
$$ \textup{Let}\;\;\; u = 4x^2+1$$
$$ \frac{dy}{dx}=\frac{d}{dx} u^7$$
$$ \frac{dy}{dx}=\frac{d}{du} u^7 \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=7u^{7-1}\frac{d}{dx}(4x^2+1)$$
$$ \frac{dy}{dx}=7u^6\left(\frac{d}{dx}4x^2+\frac{d}{dx}1\right)$$
$$ \frac{dy}{dx}=7u^6\left(4\frac{d}{dx}x^2+\frac{d}{dx}1\right)$$
$$ \because\frac{d}{dx} x^n=nx^{n-1} \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=7u^6(4(2x^{2-1})+0)$$
$$ \frac{dy}{dx}=7u^6(4(2x))$$
$$ \frac{dy}{dx}=56xu^6$$
$$ \frac{dy}{dx}=56x(4x^2+1)^6$$
Example 5:
$$ y=(x^2+3x+2)^6,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=(x^2+3x+2)^6$$
$$ \frac{dy}{dx}=\frac{d}{dx}(x^2+3x+2)^6$$
$$ \textup{Let}\;\;\; u = x^2+3x+2$$
$$ \frac{dy}{dx}=\frac{d}{dx} u^6$$
$$ \frac{dy}{dx}=\frac{d}{du} u^6 \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=6u^{6-1}\frac{d}{dx}(x^2+3x+2)$$
$$ \frac{dy}{dx}=6u^5\left(\frac{d}{dx}x^2+\frac{d}{dx}3x+\frac{d}{dx}2\right)$$
$$ \frac{dy}{dx}=6u^5\left(\frac{d}{dx}x^2+3\frac{d}{dx}x+\frac{d}{dx}2\right)$$
$$ \because\frac{d}{dx} x^n=nx^{n-1} ,\;\;\frac{d}{dx}x=1\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=6u^5(2x^{2-1}+3(1)+0)$$
$$ \frac{dy}{dx}=6u^5(2x+3)$$
$$ \frac{dy}{dx}=6(2x+3)u^5$$
$$ \frac{dy}{dx}=6(2x+3)(x^2+3x+2)^5$$
Example 6:
$$ y=\frac{1}{x+1},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\frac{1}{x+1}$$
$$ \frac{dy}{dx}=\frac{d}{dx} \frac{1}{x+1}$$
$$ \textup{Let}\;\;\; u = x+1$$
$$ \frac{dy}{dx}=\frac{d}{dx} \frac{1}{u}$$
$$ \frac{dy}{dx}=\frac{d}{dx} u^{-1}$$
$$ \frac{dy}{dx}=\frac{d}{du} u^{-1} \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=-1u^{-1-1}\frac{d}{dx}(x+1)$$
$$ \frac{dy}{dx}=-1u^{-2}\left(\frac{d}{dx}x+\frac{d}{dx}1\right)$$
$$ \because\frac{d}{dx} x=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=\frac{-1}{u^2}(1+0)$$
$$ \frac{dy}{dx}=-\frac{1}{u^2}(1)$$
$$ \frac{dy}{dx}=-\frac{1}{u^2}$$
$$ \frac{dy}{dx}=-\frac{1}{(x+1)^2}$$
Example 7:
$$ y=\frac{1}{2x+3},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\frac{1}{2x+3}$$
$$ \frac{dy}{dx}=\frac{d}{dx} \frac{1}{2x+3}$$
$$ \textup{Let}\;\;\; u = 2x+3$$
$$ \frac{dy}{dx}=\frac{d}{dx} \frac{1}{u}$$
$$ \frac{dy}{dx}=\frac{d}{dx} u^{-1}$$
$$ \frac{dy}{dx}=\frac{d}{du} u^{-1} \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} x^n=nx^{n-1}$$
$$ \therefore \frac{dy}{dx}=-1u^{-1-1}\frac{d}{dx}(2x+3)$$
$$ \frac{dy}{dx}=-1u^{-2}\left(\frac{d}{dx}2x+\frac{d}{dx}3\right)$$
$$ \frac{dy}{dx}=-1u^{-2}\left(2\frac{d}{dx}x+\frac{d}{dx}3\right)$$
$$ \because\frac{d}{dx} x=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0$$
$$ \therefore\frac{dy}{dx}=\frac{-1}{u^2}(2(1)+0)$$
$$ \frac{dy}{dx}=-\frac{1}{u^2}(2)$$
$$ \frac{dy}{dx}=-\frac{2}{u^2}$$
$$ \frac{dy}{dx}=-\frac{2}{(2x+3)^2}$$