Differentiation of Inverse Hyperbolic Functions
Differentiation of Inverse Hyperbolic Functions
Example 1:
$$ y=\sinh ^{-1} 8x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=\sinh ^{-1} 8x$$
$$ \frac{dy}{dx}=\frac{d}{dx}\sinh ^{-1} 8x$$
$$ \textup{Let}\; u= 8x$$
$$ \frac{dy}{dx}=\frac{d}{dx} \sinh ^{-1} u$$
$$ \frac{dy}{dx}=\frac{d}{du} \sinh ^{-1} u \frac{du}{dx}$$
$$ \because\frac{d}{dx}\sinh ^{-1} x=\frac{1}{\sqrt{x^2+1}}$$
$$ \therefore\frac{dy}{dx}=\frac{1}{\sqrt{u^2+1}} \frac{d}{dx}8x$$
$$ \frac{dy}{dx}=\frac{1}{\sqrt{(8x)^2+1}}(8\frac{d}{dx}x)$$
$$ \because\frac{d}{dx} x=1 $$
$$ \therefore \frac{dy}{dx}=\frac{1}{\sqrt{64x^2+1}}(8(1))$$
$$ \frac{dy}{dx}=\frac{1}{\sqrt{64x^2+1}} (8)$$
$$ \frac{dy}{dx}=\frac{8}{\sqrt{64x^2+1}}$$