Positive Indices

Positive Indices

Simplify the following, giving your answers in positive indices only.

Example 1

$$ x^3 × x^{-6} $$

Solution

$$ \because a^m × a^n = a^{m+n} \; \textup{and} \; a^{-n} = \frac{1}{a^n}$$ $$ \therefore x^3 × x^{-6} $$ $$ = x^{3+(-6)} $$ $$ = x^{3-6} $$ $$ = x^{-3} $$ $$ = \frac{1}{x^3} $$

Example 2

$$ b^4 × b^{-9} $$

Solution

$$ \because a^m × a^n = a^{m+n} \; \textup{and} \; a^{-n} = \frac{1}{a^n}$$ $$ \therefore b^4 × b^{-9} $$ $$ = b^{4+(-9)} $$ $$ = b^{4-9} $$ $$ = b^{-5} $$ $$ = \frac{1}{b^5} $$

Example 3

$$ c^6 × c^{-7} $$

Solution

$$ \because a^m × a^n = a^{m+n} \; \textup{and} \; a^{-n} = \frac{1}{a^n}$$ $$ \therefore c^6 × c^{-7} $$ $$ = c^{6+(-7)} $$ $$ = c^{6-7} $$ $$ = c^{-1} $$ $$ = \frac{1}{c^1} $$ $$ = \frac{1}{c} $$