Indices

Indices

Simplify the following:

Example 1

$$ x^4 × x^5 $$

Solution

$$ \because a^m × a^n = a^{m+n}$$ $$ \therefore x^4 × x^5 = x^{4+5} = x^9$$

Example 2

$$ y^3 × y^2 $$

Solution

$$ \because a^m × a^n = a^{m+n}$$ $$ \therefore y^3 × y^2 = y^{3+2} = y^5$$

Example 3

$$ c^6 × c$$

Solution

$$ \because a^m × a^n = a^{m+n}$$ $$ \therefore c^6 × c = c^6 × c^1 = c^{6+1} = c^7$$

Example 4

$$ x^9 ÷ x^7 $$

Solution

$$ \because a^m ÷ a^n = a^{m-n}$$ $$ \therefore x^9 ÷ x^7 = x^{9-7} = x^2$$

Example 5

$$ d^5 ÷ d^2 $$

Solution

$$ \because a^m ÷ a^n = a^{m-n}$$ $$ \therefore d^5 ÷ d^2 = d^{5-2} = d^3$$

Example 6

$$ 4a^2 × 2a^3 $$

Solution

$$ \because a^m × a^n = a^{m+n}$$ $$ \therefore 4a^2 × 2a^3 = 8a^{2+3} = 8a^5$$

Example 7

$$ 7x^4 × x^8 $$

Solution

$$ \because a^m × a^n = a^{m+n}$$ $$ \therefore 7x^4 × x^8 = 7x^{4+8} = 7x^{12}$$

Example 8

$$ 16a^6 ÷ 8a^5 $$

Solution

$$ \because a^m ÷ a^n = a^{m-n}$$ $$ \therefore 16a^6 ÷ 8a^5 = 2a^{6-5} = 2a^1 =2a$$

Example 9

$$ 49b^7 ÷ 7b^3 $$

Solution

$$ \because a^m ÷ a^n = a^{m-n}$$ $$ \therefore 49b^7 ÷ 7b^3 = 7b^{7-3} = 7b^4$$

Example 10

$$ (2c^4)^3 $$

Solution

$$ \because (ab)^n = a^n b^n \; \textup{and} \; (a^m)^n = a^{m×n}$$ $$ \therefore (2c^4)^3=(2)^3(c^4)^3=8c^{4×3}=8c^{12}$$

Example 11

$$ (3d^7)^2 $$

Solution

$$ \because (ab)^n = a^n b^n \; \textup{and} \; (a^m)^n = a^{mn}$$ $$ \therefore (3d^7)^2= (3)^2(d^7)^2=9d^{7×2}=9d^{14}$$

Example 12

$$ (5x^3 × 2x^4)^3$$

Solution

$$ \because a^m × a^n = a^{m+n} ,\; (ab)^n = a^n b^n $$ $$\textup{and} \; (a^m)^n = a^{m×n}$$ $$ \therefore (5x^3 × 2x^4)^3 $$ $$ = (10x^{3+4})^3 $$ $$ = (10x^7)^3 $$ $$ = (10)^3(x^7)^3 $$ $$ = 1000x^{7×3} $$ $$ = 1000x^{21} $$

Example 13

$$ (6a^2 × 2a^6)^2$$

Solution

$$ \because a^m × a^n = a^{m+n}, \; (ab)^n = a^n b^n$$ $$\textup{and} \; (a^m)^n = a^{m×n}$$ $$ \therefore (6a^2 × 2a^6)^2 $$ $$ = (12a^{2+6})^2 $$ $$ = (12a^8)^2 $$ $$ = (12)^2(a^8)^2 $$ $$ = 144a^{8×2} $$ $$ = 144a^{16} $$

Example 14

$$ (8y^9 ÷ 2y^6)^4$$

Solution

$$ \because a^m ÷ a^n = a^{m-n}, \; (ab)^n = a^n b^n$$ $$\textup{and} \; (a^m)^n = a^{m×n}$$ $$ \therefore (8y^9 ÷ 2y^6)^4 $$ $$ = (4y^{9-6})^4 $$ $$ = (4y^3)^4 $$ $$ = (4)^4(y^3)^4 $$ $$ = 256a^{3×4} $$ $$ = 256a^{12} $$

Example 15

$$ (6z^8 ÷ 3z^4)^3$$

Solution

$$ \because a^m ÷ a^n = a^{m-n}, \; (ab)^n = a^n b^n$$ $$ \textup{and} \; (a^m)^n = a^{m×n}$$ $$ \therefore (6z^8 ÷ 3z^4)^3 $$ $$ = (2z^{8-4})^3 $$ $$ = (2z^4)^3 $$ $$ = (2)^3(z^4)^6 $$ $$ = 8z^{4×6} $$ $$ = 8z^{24} $$

Example 16

$$ 2x^2y^3 × 3x^4y^2$$

Solution

$$ \because a^m × a^n = a^{m+n} $$ $$ \therefore 2x^2y^3 × 3x^4y^2 $$ $$ = 6x^{2+4}y^{3+2}$$ $$ = 6x^6y^5$$

Example 17

$$ 4c^4d^5 × 6c^2d^3$$

Solution

$$ \because a^m × a^n = a^{m+n} $$ $$ \therefore 4c^4d^5 × 6c^2d^3 $$ $$ = 24c^{4+2}d^{5+3}$$ $$ = 24c^6d^8$$

Example 18

$$ 25a^5b^6 ÷ 5a^2b^4$$

Solution

$$ \because a^m ÷ a^n = a^{m-n} $$ $$ \therefore 25a^5b^6 ÷ 5a^2b^4 $$ $$ = 5a^{5-2}b^{6-4}$$ $$ = 5a^3b^2$$

Example 19

$$ 48e^7f^8 ÷ 8e^3f^2$$

Solution

$$ \because a^m ÷ a^n = a^{m-n} $$ $$ \therefore 48e^7f^8 ÷ 8e^3f^2 $$ $$ = 6e^{7-3}f^{8-2}$$ $$ = 6e^4f^6$$

Example 20

$$ (3x^3y^4)^2 × 2x^8y^4$$

Solution

$$ \because (ab)^n = a^n b^n, \; (a^m)^n = a^{m×n}$$ $$ \textup{and} \; a^m × a^n = a^{m+n} $$ $$ \therefore (3x^3y^4)^2 × 2x^8y^4 $$ $$ = (3)^2(x^3)^2(y^4)^2 × 2x^8y^4 $$ $$ = 9x^{3×2}y^{4×2} × 2x^8y^4 $$ $$ = 9x^6y^8 × 2x^8y^4 $$ $$ = 18x^{6+8}y^{8+4}$$ $$ = 18x^{14}y^{12}$$