Basic Integration

Basic Integration

Example 1:

$$\int x^7\, dx $$

Solution:

\begin{align*} \because \int x^n\, dx &= \frac{x^{n+1}}{n+1}+C\\\\ \therefore \int x^7\, dx &= \frac{x^{7+1}}{7+1}+C\\ &=\frac{x^8}{8}+C \end{align*}

Example 2:

$$\int 7x^5\, dx $$

Solution:

\begin{align*} \int 7x^5\, dx &=7\int x^5\, dx \\\\ \because \int x^n\, dx &= \frac{x^{n+1}}{n+1}+C\\\\ \therefore \int 7x^5\, dx \, dx &= 7\left(\frac{x^{5+1}}{5+1}\right) +C\\ &=7\left(\frac{x^6}{6}\right)+C\\ &=\frac{7x^6}{6}+C\\ \end{align*}

Example 3:

$$\int (x^3+5x^2)\, dx $$

Solution:

\begin{align*} \int (x^3+5x^2)\, dx &=\int x^3\, dx +\int 5x^2\, dx\\ &=\int x^3\, dx +5\int x^2\, dx\\\\ \because \int x^n \, dx&= \frac{x^{n+1}}{n+1}+C\\\\ \therefore \int (x^3+5x^2)\, dx &=\frac{x^{3+1}}{3+1}+5\left(\frac{x^{2+1}}{2+1}\right)+C\\ &=\frac{x^4}{4}+5\left(\frac{x^3}{3}\right)+C\\ &=\frac{x^4}{4}+\frac{5x^3}{3}+C\\ \end{align*}