Differentiation of Logarithmic Functions
Differentiation of Logarithmic Functions
Example 1:
$$ y=ln \,3x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=ln \,3x\\
\frac{dy}{dx}&=\frac{d}{dx} ln \,3x\\\\
\textup{Let}\; u&= 3x\\\\
\frac{dy}{dx}&=\frac{d}{dx} ln\,u\\
\frac{dy}{dx}&=\frac{d}{du} ln\,u \frac{du}{dx}\\
\frac{dy}{dx}&=\frac{1}u \frac{d}{dx} (3x)\\
\frac{dy}{dx}&=\frac{1}{3x}(3)\\
\frac{dy}{dx}&=\frac{1}x\\
\end{align*}
Example 2:
$$ y=ln(x+1),\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=ln(x+1)\\
\frac{dy}{dx}&=\frac{d}{dx} ln (x+1)\\\\
\textup{Let}\; u&= x+1\\\\
\frac{dy}{dx}&=\frac{d}{dx} ln\,u\\
\frac{dy}{dx}&=\frac{d}{du} ln\,u \frac{du}{dx}\\
\frac{dy}{dx}&=\frac{1}u \frac{d}{dx} (x+1)\\
\frac{dy}{dx}&=\frac{1}{x+1}(1)\\
\frac{dy}{dx}&=\frac{1}{x+1}\\
\end{align*}
Example 3:
$$ y=ln(x^2+1),\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=ln(x^2+1)\\
\frac{dy}{dx}&=\frac{d}{dx} ln (x^2+1)\\\\
\textup{Let}\; u&= x^2+1\\\\
\frac{dy}{dx}&=\frac{d}{dx} ln\,u\\
\frac{dy}{dx}&=\frac{d}{du} ln\,u \frac{du}{dx}\\
\frac{dy}{dx}&=\frac{1}u \frac{d}{dx} (x^2+1)\\
\frac{dy}{dx}&=\frac{1}{x^2+1}(2x)\\
\frac{dy}{dx}&=\frac{2x}{x^2+1}\\
\end{align*}
Example 4:
$$ y=ln(ax+b),\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=ln(ax+b)\\
\frac{dy}{dx}&=\frac{d}{dx} ln (ax+b)\\\\
\textup{Let}\; u&= ax+b\\\\
\frac{dy}{dx}&=\frac{d}{dx} ln\,u\\
\frac{dy}{dx}&=\frac{d}{du} ln\,u \frac{du}{dx}\\
\frac{dy}{dx}&=\frac{1}u \frac{d}{dx} (ax+b)\\
\frac{dy}{dx}&=\frac{1}{ax+b}\left(\frac{d}{dx}ax+\frac{d}{dx}b\right)\\
\frac{dy}{dx}&=\frac{1}{ax+b}\left(a\frac{d}{dx}x+\frac{d}{dx}b\right)\\\\
\because\frac{d}{dx} x&=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\frac{dy}{dx}&=\frac{1}{ax+b}(a(1)+0)\\
\frac{dy}{dx}&=\frac{1}{ax+b}(a)\\
\frac{dy}{dx}&=\frac{a}{ax+b}\\
\end{align*}