Differentiation of Exponential Functions
Differentiation of Exponential Functions
Example 1:
$$ y=e^{4x},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{4x}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{4x}$$
$$ \textup{Let}\;\; u= 4x$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (4x)$$
$$ \frac{dy}{dx}=e^u(4)$$
$$ \frac{dy}{dx}=4e^u$$
$$ \frac{dy}{dx}=4e^{4x}$$
Example 2:
$$ y=e^{-x},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{-x}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{-x}$$
$$ \textup{Let}\;\; u= -x$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (-x)$$
$$ \frac{dy}{dx}=e^u(-1)$$
$$ \frac{dy}{dx}=-e^u$$
$$ \frac{dy}{dx}=-e^{-x}$$
Example 3:
$$ y=e^{3x+5},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{3x+5}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{3x+5}$$
$$ \textup{Let}\;\; u= 3x+5$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (3x+5)$$
$$ \frac{dy}{dx}=e^u(3)$$
$$ \frac{dy}{dx}=3e^u$$
$$ \frac{dy}{dx}=3e^{3x+5}$$
Example 4:
$$ y=e^{\frac{x}{4}},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{\frac{x}{4}}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{\frac{x}{4}}$$
$$ \textup{Let}\;\; u= \frac{x}{4}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} \left(\frac{x}{4}\right)$$
$$ \frac{dy}{dx}=e^u\left(\frac{1}{4}\right)$$
$$ \frac{dy}{dx}=\frac{1}{4}e^u$$
$$ \frac{dy}{dx}=\frac{1}{4}e^{\frac{x}{4}}$$
Example 5:
$$ y=e^{ax+b},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{ax+b}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{ax+b}$$
$$ \textup{Let}\;\; u= ax+b$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (ax+b)$$
$$ \frac{dy}{dx}=e^u(a)$$
$$ \frac{dy}{dx}=ae^u$$
$$ \frac{dy}{dx}=ae^{ax+b}$$
Example 6:
$$ y=e^{\frac{x}{a}},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{\frac{x}{a}}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{\frac{x}{a}}$$
$$ \textup{Let}\;\; u= \frac{x}{a}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} \left(\frac{x}{a}\right)$$
$$ \frac{dy}{dx}=e^u\left(\frac{1}{a}\right)$$
$$ \frac{dy}{dx}=\frac{1}{a}e^u$$
$$ \frac{dy}{dx}=\frac{1}{a}e^{\frac{x}{a}}$$
Example 7:
$$ y=e^{x^3},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{x^3}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{x^3}$$
$$ \textup{Let}\;\; u= x^3$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (x^3)$$
$$ \frac{dy}{dx}=e^u(3x^2)$$
$$ \frac{dy}{dx}=3x^2e^u$$
$$ \frac{dy}{dx}=3x^2e^{x^3}$$
Example 8:
$$ y=e^{\sqrt{x}},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=e^{\sqrt{x}}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^{\sqrt{x}}$$
$$ \textup{Let}\;\; u= \sqrt{x}$$
$$ \frac{dy}{dx}=\frac{d}{dx} e^u$$
$$ \frac{dy}{dx}=\frac{d}{du} e^u \frac{du}{dx}$$
$$ \because\;\; \frac{d}{dx} e^x=e^x$$
$$ \therefore\;\; \frac{dy}{dx}=e^u \frac{d}{dx} (\sqrt{x})$$
$$ \frac{dy}{dx}=e^u\left(\frac{1}{2\sqrt{x}}\right)$$
$$ \frac{dy}{dx}=\left(\frac{1}{2\sqrt{x}}\right)e^\sqrt{x}$$
$$ \frac{dy}{dx}=\left(\frac{e^\sqrt{x}}{2\sqrt{x}}\right)$$
Example 9:
$$ y=xe^x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=xe^x$$
$$ \frac{dy}{dx}=\frac{d}{dx} xe^x$$
$$ \because\;\; \frac{d}{dx} uv=u \frac{dv}{dx}+v \frac{du}{dx}$$
$$ \therefore\;\; \frac{dy}{dx}=x\frac{d}{dx}e^x+e^x\frac{d}{dx}x$$
$$ \frac{dy}{dx}=xe^x+e^x(1)$$
$$ \frac{dy}{dx}=xe^x+e^x$$
Example 10:
$$ y=x^4e^x,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
$$ y=x^4e^x$$
$$ \frac{dy}{dx}=\frac{d}{dx} x^4e^x$$
$$ \because\;\; \frac{d}{dx} uv=u \frac{dv}{dx}+v \frac{du}{dx}$$
$$ \therefore\;\; \frac{dy}{dx}=x^4\frac{d}{dx}e^x+e^x\frac{d}{dx}x^4$$
$$ \frac{dy}{dx}=x^4e^x+e^x(4x^3)$$
$$ \frac{dy}{dx}=x^4e^x+4x^3e^x$$