Chain Rule of Differentiation
Chain Rule of Differentiation
Example 1:
$$ y=(x+5)^6,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=(x+5)^6\\
\frac{dy}{dx} &=\frac{d}{dx} (x+5)^6\\\\
\textup{Let}\;\;\; u &= x+5 \\\\
\frac{dy}{dx} &=\frac{d}{dx} u^6\\
\frac{dy}{dx} &=\frac{d}{du} u^6 \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n &=nx^{n-1}\\\\
\therefore \frac{dy}{dx} &=6u^{6-1}\frac{d}{dx}(x+5)\\
\frac{dy}{dx} &=6u^5(\frac{d}{dx}x+\frac{d}{dx}5)\\\\
\because\frac{d}{dx} x &=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx} &=6u^5(1+0)\\
\frac{dy}{dx} &=6u^5(1)\\
\frac{dy}{dx} &=6u^5\\
\frac{dy}{dx} &=6(x+5)^5\\
\end{align*}
Example 2:
$$ y=(3x-4)^5,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=(3x-4)^5\\
\frac{dy}{dx}&=\frac{d}{dx} (3x-4)^5\\\\
\textup{Let}\;\;\; u &= 3x-4\\\\
\frac{dy}{dx}&=\frac{d}{dx} u^5\\
\frac{dy}{dx}&=\frac{d}{du} u^5 \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=5u^{5-1}\frac{d}{dx}(3x-4)\\
\frac{dy}{dx}&=5u^4\left(\frac{d}{dx}3x-\frac{d}{dx}4\right)\\
\frac{dy}{dx}&=5u^4\left(3\frac{d}{dx}x-\frac{d}{dx}4\right)\\\\
\because\frac{d}{dx} x&=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx}&=5u^4(3(1)-0)\\
\frac{dy}{dx}&=5u^4(3)\\
\frac{dy}{dx}&=15u^4\\
\frac{dy}{dx}&=15(3x-4)^4\\
\end{align*}
Example 3:
$$ y=(2-5x)^4,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=(2-5x)^4\\
\frac{dy}{dx}&=\frac{d}{dx} (2-5x)^4\\\\
\textup{Let}\;\;\; u &= 2-5x \\\\
\frac{dy}{dx}&=\frac{d}{dx} u^4\\
\frac{dy}{dx}&=\frac{d}{du} u^4 \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=4u^{4-1}\frac{d}{dx}(2-5x)\\
\frac{dy}{dx}&=4u^3\left(\frac{d}{dx}2-\frac{d}{dx}5x\right)\\
\frac{dy}{dx}&=4u^3\left(\frac{d}{dx}2-5\frac{d}{dx}x\right)\\\\
\because\frac{d}{dx}c&=0 \;\;\; \textup{and} \;\;\;\frac{d}{dx} x=1\\\\
\therefore\frac{dy}{dx}&=4u^3(0-5(1))\\
\frac{dy}{dx}&=4u^3(-5)\\
\frac{dy}{dx}&=-20u^3\\
\frac{dy}{dx}&=-20(2-5x)^3\\
\end{align*}
Example 4:
$$ y=(4x^2+1)^7,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=(4x^2+1)^7\\
\frac{dy}{dx}&=\frac{d}{dx}(4x^2+1)^7\\\\
\textup{Let}\;\;\; u &= 4x^2+1\\\\
\frac{dy}{dx}&=\frac{d}{dx} u^7\\
\frac{dy}{dx}&=\frac{d}{du} u^7 \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=7u^{7-1}\frac{d}{dx}(4x^2+1)\\
\frac{dy}{dx}&=7u^6\left(\frac{d}{dx}4x^2+\frac{d}{dx}1\right)\\
\frac{dy}{dx}&=7u^6\left(4\frac{d}{dx}x^2+\frac{d}{dx}1\right)\\\\
\because\frac{d}{dx} x^n&=nx^{n-1} \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx}&=7u^6(4(2x^{2-1})+0)\\
\frac{dy}{dx}&=7u^6(4(2x))\\
\frac{dy}{dx}&=56xu^6\\
\frac{dy}{dx}&=56x(4x^2+1)^6\\
\end{align*}
Example 5:
$$ y=(x^2+3x+2)^6,\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=(x^2+3x+2)^6\\
\frac{dy}{dx}&=\frac{d}{dx}(x^2+3x+2)^6\\\\
\textup{Let}\;\;\; u &= x^2+3x+2\\\\
\frac{dy}{dx}&=\frac{d}{dx} u^6\\
\frac{dy}{dx}&=\frac{d}{du} u^6 \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=6u^{6-1}\frac{d}{dx}(x^2+3x+2)\\
\frac{dy}{dx}&=6u^5\left(\frac{d}{dx}x^2+\frac{d}{dx}3x+\frac{d}{dx}2\right)\\
\frac{dy}{dx}&=6u^5\left(\frac{d}{dx}x^2+3\frac{d}{dx}x+\frac{d}{dx}2\right)\\\\
\because\frac{d}{dx} x^n&=nx^{n-1} ,\;\;\frac{d}{dx}x=1\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx}&=6u^5(2x^{2-1}+3(1)+0)\\
\frac{dy}{dx}&=6u^5(2x+3)\\
\frac{dy}{dx}&=6(2x+3)u^5\\
\frac{dy}{dx}&=6(2x+3)(x^2+3x+2)^5\\
\end{align*}
Example 6:
$$ y=\frac{1}{x+1},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=\frac{1}{x+1}\\
\frac{dy}{dx}&=\frac{d}{dx} \frac{1}{x+1}\\\\
\textup{Let}\;\;\; u &= x+1\\\\
\frac{dy}{dx}&=\frac{d}{dx} \frac{1}{u}\\
\frac{dy}{dx}&=\frac{d}{dx} u^{-1}\\
\frac{dy}{dx}&=\frac{d}{du} u^{-1} \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=-1u^{-1-1}\frac{d}{dx}(x+1)\\
\frac{dy}{dx}&=-1u^{-2}\left(\frac{d}{dx}x+\frac{d}{dx}1\right)\\\\
\because\frac{d}{dx} x&=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx}&=\frac{-1}{u^2}(1+0)\\
\frac{dy}{dx}&=-\frac{1}{u^2}(1)\\
\frac{dy}{dx}&=-\frac{1}{u^2}\\
\frac{dy}{dx}&=-\frac{1}{(x+1)^2}\\
\end{align*}
Example 7:
$$ y=\frac{1}{2x+3},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=\frac{1}{2x+3}\\
\frac{dy}{dx}&=\frac{d}{dx} \frac{1}{2x+3}\\\\
\textup{Let}\;\;\; u &= 2x+3\\\\
\frac{dy}{dx}&=\frac{d}{dx} \frac{1}{u}\\
\frac{dy}{dx}&=\frac{d}{dx} u^{-1}\\
\frac{dy}{dx}&=\frac{d}{du} u^{-1} \frac{du}{dx}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1}\\\\
\therefore \frac{dy}{dx}&=-1u^{-1-1}\frac{d}{dx}(2x+3)\\
\frac{dy}{dx}&=-1u^{-2}\left(\frac{d}{dx}2x+\frac{d}{dx}3\right)\\
\frac{dy}{dx}&=-1u^{-2}\left(2\frac{d}{dx}x+\frac{d}{dx}3\right)\\\\
\because\frac{d}{dx} x&=1 \;\;\; \textup{and} \;\;\;\frac{d}{dx}c=0\\\\
\therefore\frac{dy}{dx}&=\frac{-1}{u^2}(2(1)+0)\\
\frac{dy}{dx}&=-\frac{1}{u^2}(2)\\
\frac{dy}{dx}&=-\frac{2}{u^2}\\
\frac{dy}{dx}&=-\frac{2}{(2x+3)^2}\\
\end{align*}