Quotient Rule of Differentiation
Quotient Rule of Differentiation
Example 1:
$$ y=\frac{(2x^3+5)}{(x-7)},\;\;\; \textup{Find} \;\;\frac{dy}{dx}$$
Solution:
\begin{align*}
y&=\frac{(2x^3+5)}{(x-7)}\\
\frac{dy}{dx}&=\frac{d}{dx} \frac{(2x^3+5)}{(x-7)}\\\\
\because\;\; \frac{d}{dx} \frac{u}{v}&= \frac{v \frac{du}{dx}-u \frac{dv}{dx}}{v^2}\\\\
\therefore\;\; \frac{dy}{dx}&=\frac{(x-7)\frac{d}{dx}(2x^3+5)-(2x^3+5)\frac{d}{dx}(x-7)}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{(x-7)(\frac{d}{dx}2x^3+\frac{d}{dx}5)-(2x^3+5)(\frac{d}{dx}x-\frac{d}{dx}7)}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{(x-7)(2\frac{d}{dx}x^3+\frac{d}{dx}5)-(2x^3+5)(\frac{d}{dx}x-\frac{d}{dx}7)}{(x-7)^2}\\\\
\because\;\; \frac{d}{dx} x^n&=nx^{n-1} ,\;\;\; \frac{d}{dx} x=1 \;\;\; \textup{and} \;\;\; \frac{d}{dx} c=0\\\\
\frac{dy}{dx}&=\frac{(x-7)(2(3x^{3-1})+0)-(2x^3+5)(1-0)}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{(x-7)(2(3x^2))-(2x^3+5)(1)}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{(x-7)(6x^2)-(2x^3+5)}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{6x^3-42x^2-2x^3-5}{(x-7)^2}\\
\frac{dy}{dx}&=\frac{4x^3-42x^2-5}{(x-7)^2}\\
\end{align*}